

OSTİM TECHNICAL UNIVERSITY INSTITUTE OF SCIENCES ELECTRICAL & ELECTRONICS ENGINEERING COURSE SYLLABUS 2022-2023 FALL

EEE303 Digital System Design

Course Name	Code	Semester	Theory (hour/week)	Application (hour/week)	Lab (hour/week)	Credits	ECTS
Digital System Design	EEE303	Fall	3	0	0	3	4

Course Language	English
Course Type	Compulsory
Course Level	Undergraduate
Mode of Delivery	In class lectures
Course Lecturer(s)	Dr. Hüseyin KÖSE
Teaching Methods and Techniques of the Course	Lectures, Homeworks

Course Objectives

The objective of this course is to learn the operation principles of gate array logic circuits and how to program to gate array logic circuits. Understand and clarify the differences between microcontroller programming and VHDL

Learning Outcomes

Having successfully completed this course, students will be able to:

LO-1: Understand the concept of gate array logic circuits and field programmable gate array logic circuits.

LO-2: Can identify the basic gate array logic circuits and can design complex electronic circuit elements like shift register, memory, level shifter etc.

LO-3: Can design gate array logic circuits to solve any basic mathematical or logical problems.

LO-4: Can understand the working principles of serial and parallel communication requirements, hardware and protocol types.

LO-5: Know the history of programming languages (ASM, Basic, C, C++, etc.) and Understand the Hardware Programming Language VHDL.

Course Description

Basic characteristics and operation principles of gate array logic circuits. Computer working principle. Memory organizations. Serial and Parallel data transfers, communication types, hardwares and protocols. Microcontroller, microprocessor and FPGA architecture and working principles. Introduction to FPGA designing and VHDL programming.

Subjects and Related Preparation Studies				
Week	Subjects			
1	Remembering of Logic Gates and Boolean Mathematics, Encoders, Decoders and Multiplexers			
2	Counters			
3	Registers			
4	Memory and Programmable Logic, PAL, PLA			
5	Register Transfer Level			
6	Computer Architecture and Mathematics			
7	CPU and Basic Program Instructions			
8	Field Programmable Gate Array Logics (FPGA) and design principles			
10	Midterm			
11	Input Output Organizations, Memory Organizations			
12	Transistor-Transistor Logic Circuits			
13	Designing Combinational Logic Circuits, CMOS input output port designing			
14	Microcontroller, Microprocessor and FPGA Architectures and Design Principles			
15	Microprocessor Programming, FPGA designing and VHDL Programming			
16	Final Exam			

Course Notes/Textbooks

- 1. Lecture Notes and Presentations
- 2. Digital Design 5th, Ed. with an Introduction to the Verilog HDL (fifth edition), M. Morris Mano, Michael D. Ciletti

Evaluation System				
Semester Activities	Number	Weighting		
Participation				
Laboratory				
Application				
Field Work				
Portfolio				
Quizzes / Studio Critiques				
Homework / Assignments	1	20%		
Presentation				
Project				
Report				
Seminar				
Midterm	1	40%		
Final	1	40%		
	Sum	100 %		
Weighting of Semester Activities on the Final Grade		60 %		
Weighting of End-of-Semester Activities on the Final Grade		40 %		
	Sum	100 %		

Course Category			
Core Courses	Х		
Major Area Courses	x		
Supportive Courses	x		
Media and Management Skills Courses			
Transferable Skill Courses	Х		

Course Learning Outcomes and Program Qualifications Relationship						
No		Contribution Level				
INU	rrogram Competencies/Outcomes		2	3	4	5
1	Ability to apply knowledge of mathematics, science, and engineering				Х	
2	Ability to design and conduct experiments and to analyze and interpret experimental				х	
	results.					
3	Ability to design a system, component, and process according to specified					x
	requirements.					
4	Ability to work in teams in interdisciplinary areas.					х
5	Ability to identify, formulate and solve engineering problems.					x
6	Identifies, defines, formulates and solves complex network problems; chooses and				х	
U	applies analysis and modeling methods suitable for this purpose.					
	Develops, selects and uses modern techniques and tools necessary for the					
7	analysis and solution of complex problems encountered in Electrical and					х
	Electronics Engineering applications; uses required technologies effectively.					

ECTS / Workload Table					
Semester Activities	Number	Duration (Hours)	Workload		
Theoretical Course Hours	16	3	48		
(Including exam week: 16 x total hours)					
Laboratory					
Application					
Portfolio					
Field Work					
Study Hours Out of Class					
Presentation					
Project					
Reports					
Homework/Assignments	1	20	20		
Quizzes / Studio Critiques					
Midterms	1	20	20		
Final Exam	1	20	20		
Total	$(ECTS \ 108/25 = 4.32)$		108		